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ABSTRACT 
Differential equations have been used to create mathematical models of real world systems in which rates of change 

are involved, for example in the study of how population grows or shrinks. One of the earliest models by Thomas 

Malthus has been found to be unrealistic since it predicts  that population will grow exponentially and without bound 

– a prospect that defies physical limitations. Verhulst in his logistic population model developed a generalized version 

of the Malthusian model but added that natural factors such as disease and predators also affect mortality rate, and 

hence the rate of population growth. The Lokta – Voltera, which is a two species model, describes interactions between 

a predator and a prey in an ecosystem. The model forms the basis of many models used today in analysis of population 

dynamics, but unfortunately, in its original form, it lacks a stable equilibrium point. In mid 1980’s Ragozin and Brown, 

established the existence of a steady state and described a unique approach to it for a predator Prey System. 

 

Nile perch is a predator since it feeds on other small fish e.g. haplochromines, but it is also a prey because it is 

harvested for food. Rabuor and Polovina showed that there is a decline in the volume of Nile Perch and they attributed 

this to harvesting. So far, none of the models cited above  considered harvesting as a factor affecting population 

growth. The need to develop a model for fish harvesting in general and in particular, the Lates Niloticus (Nile Perch) 

was Born out of this gap. The main objective of this study was to develop a model which can predict the amount of 

Nile perch harvested at any time t. 

 

The procedure in this study involved using differential equations to yield specific  insights into the management of 

complex ecological systems e.g. population outbreaks. We have analyzed the existing logistics model for equilibrium 

solutions and stability. To test on the stability of the model, we obtain secondary data from the Kenya Marine and 

Fisheries Institute (KMFRI) and Lake Basin Development Authority (LBDA). The data so obtained has been analysed 

using the concept of stabilityin order to develop the required model. We have managed in this thesis to construct three 

different models viz: 

 

i) The Constant –rate harvesting model 

ii) The Proportional – rate harvesting model 

iii) A model depicting when harvesting is a function of P2(t) where P(t) represents the amount of Nile Perch 

harvested at any time t. 

 

Stability analysis and verification of the models revealed that the proportional – rate harvesting model is more reliable 

as compared to the other two. This is because its solutions are closer to actual values of the Nile perch harvested for 

the period under investigation. It is hoped that the model would help economic and social planners in controlling the 

population of Lates Niloticus. The result will also give more insight in research in mathematical modeling. 

 

     INTRODUCTION 
The fisheries of lake Victoria have undergone dramatic changes since mid 1950s including: the introduction of alien 

species, increased fishing pressure with introduction of more efficient fishing gear and motorized fishing craft and 
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changes in the tropic status of the lake, Ochumba,Gophen and Pollinger[12]. The introduced Nile Perch, Lates 

Niloticus, preyed on the one abundant haplochromines, reducing their percentage contributions to catch the less 

than1% by weight, Graham[5].The catches in the Kenyan waters (Nyanza Gulf) of lake Victoria have therefore 

changed since the Nile Perch population explosion in early 1980s, Jackson[9]. 

 

The increase in Nile perch has been well documented, Okemwa[13]. Rabuor and Polivina[14], also showed the 

increase in landings upto 1991, which they attributed entirely to increasing fishing effort. They expressed concern 

about expanding fishery, stating that the fishery and stock were not in equilibrium and foresaw a substantial decline 

in catches. The scenario of increasing effort leading to increased catches deed indeed take place but the direct link to 

fishing effort ia an over-simplification, Ikiara[8]. Whilst fishing effort did increase between 1986 and 1989, it was 

stimulated by Nile perch stock at that time, Holling[7]. The concern of Rabuor and Polovina were well founded since 

the catches declined despite a continued increase in effort and by 1998 the catches were half those at the beginning of 

the decade, Getabu and Nyakundi[4]. 

 

To avoid a potential collapse in Nile perch Fishery, there is need to thoroughly asses the status of the stocks, thereby 

being able to predict future population of species. The main aim of this study was, therefore to develop a model to 

estimate the magnitude of Nile perch harvests at any time t in the Nyanza gulf of Lake Victoria for management 

purposes 

 

BASIC MATHEMATICAL CONCEPTS 
Theorem: Existence and uniqueness of solutions:[15] 

Suppose that a first- order ordinary differential equation can be written in the form 

   )(,
)(

tPtf
dt

tdP
 ,       (2.1.1) 

where both  )(, tptf  and its partial derivatives with respect to t and )(tP  are continuous in a rectangular region 

in the )(, tPt -plane, 21 ttt  , )()()( 21 tPtPtP  (where any bounds maybe infinite). Then for any number 

t0 and a within the region, there is an open interval containing t0, bta  , on which there exists precisely one 

solution of (2.1.1) satisfying the initial condition atP ),( 0 .For proof see[15] 

 

Definition of Boundedness 

A real valued function f is bounded on a region R if there is a constant M such that Mpf )(  for all p in R, 

Blanchard et al [2]. 

The precise sense of the word “region” does not matter. For the functions f(x) of one variable the region is usually an 

interval; for function f(x ,y)of two variables with p =(x, y) the region is usually a rectangular region in the plane , and 

similarly in higher dimensions. What is important is that the inequality Mpf )(  must hold for all values of the 

variable under consideration. As an example the function 
x

xf
1

)(   is bounded for 21  x , and also for 

 x1 , but not for 10  x . 

 

Stability and Equilibrium solution [3] 

A solution P(t) of a differential equation of the form  

 )(,
)(

tptf
dt

tdp
        2.3.1 

is said to be stable if for 0     there exists a positive number )(   such that any solution )(tq  of 

(2.3.1) existing on interval I satisfies 0,)()( tttptq   whenever  )()( 00 tptq .  
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A solution p(t) is said to be asymptotically stable if it is stable and if there exists a number 00   such that any other 

solution q(t) of (2.3.1), existing on interval I is such that 0)()(  tptq  as t  whenever 

000 )()(  tptq . A solution p(t) is said to be unstable if it is not stable, Meyer [11]. 

For a differential equation of the form (2.3.1), the value P* is called an equilibrium level if 0)( * Pf . We observe 

that if 
*P  is in an equilibrium level, then the constant function 

*)( PtP   satisfies equation (2.3.1), and hence it is 

called an equilibrium solution of the differential equation (2.3.1). 

 

Example 3.1. Consider the Logistic differential equation given by: 

),(
)(

1
)(

tp
k

tp
r

dt

tdp








        2.3.2 

where r is the intrinsic rate of growth and k is the carrying capacity. The equilibrium levels are obtained by setting  

0
)(


dt

tdp
, which then gives 

 0)(
)(

1 







 tp

k

tp
r         2.3.3 

Solving for p(t),  we obtain the equilibrium solutions p(t) =0 and p(t)= k. 

Definition 2.1 

A neighborhood of a number S is any open interval (a,b) where bSa  , Guterman and Nitecki[6]. An equilibrium 

level 
*P  for the differential equation  )(,

)(
tptf

dt

tdp
  is stable if there exists a neighborhood N of 

*P  with the 

property that whenever NP 0 , then the solution P(t), with the initial condition P(t)= P0, 

i) Is finite for all 0tt   

ii) Has lim
𝑡→∞

𝑃(𝑡) =
*P  

N is called the neighborhood of stability 

The Malthusian Equation is of the form 

 )(
)(

trP
dt

tdp
 ,      2.4.1 

for some constants of proportionality r (the growth constant). Assuming  

0)( tP (which is a reasonable assumption, since P(t) represents a population), we have  

 r
dt

tdp

tP


)(

)(

1
         2.4.2 

Integrating (2.4.), we obtain 

 
rteOPtP )()(  ,         2.4.3 

where P0 = P(0)is the initial  population size. 

 

Solution of the logistic differential equation. 

Assuming  the rate of growth of Nile Perch Population follows the Verhulst’s[16] logistic growth model, 

 )()(
)( 2 tp

k

r
trP

dt

tdp
        2.5.1 

Where r  is the intrinsic growth rate coefficient 
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 P(t) is the population size 

 t is the time period, 

 k is the carrying capacity (Is maximum limit beyond which population cannot be sustained) 

Equation (2.5.1) can be simplified to  

 









k

tp
trP

dt

tdp )(
1)(

)(
       2.5.2 

Integrating both sides of equation (2.5.2) and simplifying we have  

 ,
)(

)(
Crt

tPk

tP
In 










       2.5.3 

Where C is a constant. 

To find C, we evaluate both sides of equation (2.5.3) at t = 0; 
)0(

)0(
ln

Pk

P
C


 , and after simplification, equation 

(2.5.3) becomes 

 
  rtePkP

kP
tP




)0()0(

)0(
)(        2.5.4 

From equation (2.5.4), as t , ktP )( (carrying capacity).  

As )0()(,0 PtPt  . 

 

CONSTRUCTION OF LOGISTIC MODEL WITH HARVESTING 
Introduction 

Consider a population P(t) of Nile Perch, with a growth rate r, in an environment with a carrying capacity k. We take 

a standard simple model of population growth, the logistic model. We then consider different ways of harvesting the 

fish, with the goal of maximizing long-term yield. We will attempt to solve the logistic equation with harvesting 

analytically and then analyze the situation for stability. 

 

There are two standard approaches to harvesting from a population. We can harvest a set number of individuals every 

time (constant harvesting), or we can harvest a set percentage of population every time (proportional harvesting). The 

basic model of the unharvested   population is given by (2.5.2) 

),(
)(

1
)(

tp
k

tp
r

dt

tdp








         (3.1.1) 

If the harvesting rate is given by a nonnegative function  )(tP  then the balance law yields the ordinary differential 

equation 

  ,)()(
)(

1
)(

tPtp
k

tp
r

dt

tdp









        (3.1.2) 

Where r and k are positive constants. 

If we harvest   units of fish every unit of time , we get the constant harvesting model 

 ,)(
)(

1
)(









 tp

k

tp
r

dt

tdp
 

where  )(tP   is a positive constant. 

 

This model assumes that a fixed number of fishing licenses have already been sold and that they do not restrict the 

number of fish a license holder may catch in a day. In this sense we cannot control the people, but we can still chose 

the type of fish we put in the lake. 
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In the other model, if we harvest a fraction h of the population every unit of time, we get the proportional or variable 

rate-harvesting model. From equation (3.1.2), if we let   )()( thPtP   then 

  ),()(
)(

1
)(

thPtp
k

tp
r

dt

tdp









       (3.1.4) 

 

Since the number of people fishing at any given time and the number of fish caught per person are not predictable, 

)(thP  represents the harvesting effect on average. This means that we are more interested in the long-term behavior 

of fish population. Also we are interested in whether the fish population is sustainable, which is another long term 

consideration. 

In real life, setting a quota on all harvesters and then counting the harvest can enforce constant harvesting. Proportional 

harvesting is often enforced by limiting the number of days that harvesting is permitted, with the assumption that in a 

fixed period of time it is only possible to catch a certain percentage of fish available. Another way to enforce 

proportional harvesting is to do a periodic census, and then adjust quota values for harvesters according to the current 

population figures. 

 

Basic assumptions of the study 

The study was based on the following assumptions 

i) Each model developed in this study is a single species equilibrium model that assumes a constant 

environmental situation.. However, the Nile perch stock depends on several ecological conditions like 

food supply water, temperature, disease, pollution, currents and so on. 

ii) The model further assumes that both the birth and death rates are the same for all intervals. Let the 

constant d be the death rate so that, for all 0t  

)(

)(

tP

tB
b   and 

)(

)(

tP

tD
d   

iii) The models also assume that there is no migration into or out of the population, that is , the only source 

of population change is birth, death and harvesting. 

 

Population under harvesting 

Consider Verhulst logistic differential equation given by (3.1.1) 

)(
)(

1
)(

tP
k

tP
r

dt

tdP








          (3.2.1) 

Equation (3.2.1) describes population growth under environmental constraints. The harvesting model, as shown in the 

equation (3.1.2) is given as 

 )()(
)(

1
)(

tPtP
k

tP
r

dt

tdP









        (3.2.2) 

Where  )(tP  is the harvesting component. 

 

Constant – rate harvesting model 

Suppose that )(tP represents the population of Nile perch, and that fishing removes a certain number   of fish each 

unit of time. This meant there will be a term in   )(tPttP   equals to t . When we divide by t  and 

take limits, we arrive at the equation for resources under constant harvesting: 

,)(
)(

1
)(









 tP

k

tP
r

dt

tdP
        (3.2.3) 

Where  )(tP   is a constant function. 
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Separating variables. we get  

dt
kktrkPtrP

tdP 1

)()(

)(
2


 

        (3.2.4) 

Integrating equation (3.2.4) and solving for )(tP   we get 

,

)0(

)0(

)0(

)0(

)(

r
rP

P

rP

P

tP

e

e

t
k

r

t
k

r




































 









 















       (3.2.5) 

Where 
2

422 krkrrk 



  and 

r

krkrrk

2

422 



  

From equation (3.2.5) 

As )0()(,0 PtPt  . 

As 
r

tPt


 )(,  

When 
r

tP


)(  and 0 (no harvesting) then  

k
r

rk
tP 

2

2
)( (carrying capacity). 

 

Proportional – rate harvesting Model 

Suppose that a certain proportion h of fish are caught per unit of time (the more fish the easier to catch). This means 

that instead of the term t  for the number of fish taken away in an interval of length t , we would now have a 

term of the form tthP  )( , which is proportional to the population. The differential equation that follows is  

 )()(
)(

1
)(

tPhtP
k

tP
r

dt

tdP









        (3.2.6) 

Where h is the rate of harvesting. 

Obtaining antiderivatives of both sides of equation (3.2.6), we have  

  
dt

tPtP

tdP

 )()(

)(
         (3.2.7) 

Integrating equation (3.2.7) and solving for )(tP , we obtain 

 
,

)0()0(

)0(
)(

e
t

PP

P
tP








         (3.2.8) 

Where hr   and 
k

r
 . 

From equation (3.2.8), as )0()(,0 PtPt  and  

As 



 )(, tPt  or 

r

hrk
tP

)(
)(


 . 

If h=0 (no harvesting), then ktP )( (carrying capacity). 
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When harvesting is a function of   )()()( 22 thPtPtP  . 

If the proportion of fish caught per unit of time depends on the power )(2 tP , then the harvesting equation becomes 

 )()(
)(

1
)( 2 tPhtP

k

tP
r

dt

tdP









        (3.2.9) 

Separating the variables in equation (3.2.9) 

 
dt

rtmPtP

tdP


)()(

)(
       (3.2.10) 

Solving to )(tP  we get 
 

,
)0()(

)0(
)(

mrmPtp

rP
tP

e
rt






   (3.2.11) 

Where h
k

r
m  . 

From equation (3.2.11) 

As 
  mrmP

rP
tPt






)0(

)0(
)(,0 . As 

khr

kr

h
k

r

r
tPt






 )(,  

When h=0 (no harvesting), ktP )( (carrying capacity) 

We observe that the harvesting model (equation (3.2.3)) has unrealistic behavior close to 0)( tP : the differential 

equation (3.2.3) implies that at 0)( tP , it yields 


dt

tdP )(
         (3.2.12) 

This implies that )(tP  continues to decrease, and would become negative. This is meaningless because population 

cannot be negative. According to Holing [7], a way to fix this defect in the modelis to assume that the harvesting 

equation  

)(

)(
)(

)(
1

)(

tP

tP
htP

k

tP
r

dt

tdP
















      (3.2.13) 

Where h is the rate of harvesting and  is the quantity harvested. 

Equation (3.2.13) has equilibrium at 0)( tP for all parameters, and the rate at which fish are caught decreases with 

)(tP .This is practicable when fewer fish are available, it is harder to find them and so the daily catch drops. Also 

when there are sufficiently manyfish (when P(t) is large ), h
tP

tP
h

tP


 )(

)(
lim

)( 


 the fish level is close to h 

Expanding and simplifying equation (3.2.13) 

))((

)()()()()()( 322

tPk

tPhktrptPrtrkPtPrk

dt

tdP









    (3.2.14) 

Separating the variables we have 

 
dt

kntmPtrPtP

tdPtP 1

)()()(

)())((
2





      (3.2.15) 

Evaluating equation (3.2.15) using partial fractions we obtain 
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 
dt

kntmPtrP

n

mn
tP

n

r

tnPntmPtrPtP

tdPtP 1

)()(

)(

)()()()(

)())((
22















  (3.2.16) 

 

Integrating both sides of equation (3.2.16), we have 

 

   








dt

k
tdP

ntmPtrP

mntrP

tP

tdP

nntmPtrPtP

tdPtP 1
)(

)()(

)()(

)(

)(

)()()(

)())((
22


   

          (3.2.17) 

ct
kr

m
tP

rnm

r

rnmn

r

r

n
tP

r

m
tP

n
tP

n





































1

2
)(

4

2
arctan

4
)()(ln

2
)(ln

22

2 
 

          (3.2.18) 

From equation (3.2.18), 

When 0
2

)(,
2

)( 









r

m
tP

r

m
tP and 0)( tP . (Extinction).  

When ""
2

)(,
2

)( ve
r

m
tP

r

m
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 and .)( ktP  (carrying capacity). 

Verification of the model 

Data Parameter estimates 

The following table gives an illustration on the catch time series. 

Table 1:Annual catches of Nile Perch, lates niloticus, from the Nyanza Gulf of lake Victoria , 1979 – 1998 

Year Catches in tonnes Percentage composition 

1979 4,286,000 14.0120 

1980 4,310, 000 16.0158 

1981 22,835, 000 59.8099 

1982 33,134, 000 54.3555 

1983 52,37, 000 67.9004 

1984 41,319, 000 57.4993 

1985 50,029, 000 56.4732 

1986 64,929, 000 55.2442 

1987 86,833, 000 60.4176 

1988 82,020, 000 48.9402 

1989 119,276, 000 41.9534 

1990 118,504, 000 38.4275 

1991 122,781, 000 28.4061 

1992 105,980, 000 51.1388 

1993 109,196, 52.1284 

1994 88,838, 000 53.7020 

1995 102,427, 000 56.3127 

1996 96,472, 000 57.9545 

1997 73,005, 000 37.2163 

1998 76,664, 000 40.0322 
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From table 1, and using MATLAB, we obtain the following parameter estimates: 

h = 0.170341985 

k = 345,036, 000 

1.041728643.0 r  

And we let P(0) = 22,835,000 tonnes (1981 harvest 

 

Constant – rate harvesting model 

From table 1 

 

For the period 1990 – 1991, 

r =0.41728643, k =345,036,000,  P (0) = 22,835,000 and 

17.710,994,350    

For the maximum value of   

  =71,989,420.33 and  =172,518,000 

The population in 1991 would be : 

P(1991) = 168,492,057 tonnes. 

 

For the period 1995 – 1996, 

r =0.31728643, k =345,036,000,  P (0) = 22,835,000 and 

17.810,368,270    

For the maximum value of   

  =54737620.33 and  =172,518,000 

The population in 1996 would be : 

P(1996) = 167,194,647.8  tonnes. 

 

Proportional – rate harvesting model 

For the period 1990 – 1991, 

r =0.41728643, h =0.1703441985,  k =345,036,000,  P (0) = 22,835,000 and 

The population in 1991 would be : 

P(1991) = 122,11,901.8 tonnes. 

 

For the period 1995 – 1996, 

r = 0.31728643, h =0.1703441985,  k =345,036,000,  P (0) = 22,835,000 and 

The population in 1996 would be : 

P(1996) = 96,157,373.31 tonnes. 

 

When harvesting is a function of P2(t) 

For the period 1995 – 1996, 

r = -0.31728643, h =0.1703441985,  k =345,036,000,  P (0) = 22,835,000 and 

The population in 1996 would be : 

P(1996) = 0.015965907 tonnes. 

 

This formula is only applicable when r < 0, since for r > 0, P(t) < 0, which is meaningless. 

 

Remarks 

From the above example, it follows that the proportional-rate harvesting model is more reliable as compared to the 

other two models developed. This is because its solutions are closer to the value in the table as compared to the results 

obtained from the other models. The reliability of the model could be enhanced by obtaining more accurate data of 
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Nile Perch population. However, we had noted earlier on that in Kenya , data collection and compilation is still a 

problem. 

 

CONCLUSION 
In this paper, we have managed to develop the following models; 

i) The constant – rate harvesting model 

ii) The proportional – rate harvesting model 

iii) We have also considered a case where fish population depends on the power P2(t). 

 

Stability analysis and verification of the models revealed that proportional - rate harvesting model is more reliable as 

compared to the other two models developed. 

 

The accuracy of the catch - time series data is always affected by several factors not least, the way it is gathered. 

Therefore the data spanning the period1981 – 1998 have been used because it includes a period when the percentage 

composition of Nile Perch in the total catch was in excess of 60%. It also represents a period of Nile Perch domination 

of fish harvests from Lake Victoria. Dealing with data in this period therefore should help to improve the quality of 

results. 
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